organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-(4-Methyl-1,3-thiazol-5-yl)-1-[1'-(4-methyl-1.3-thiazol-5-yl)-2-oxo-2,3,2',3',5',6',7',7a'-octahydro-1Hindole-3-spiro-3'-1H-pyrrolizin-2'-yl]prop-2-en-1-one

P. Ramesh.^a S. Murugavel.^b A. SubbiahPandi.^a* R. Murugan^c and S. Sriman Narayanan^c

^aDepartment of Physics, Presidency College (Autonomous), Chennai 600005, India, ^bDepartment of Physics, Government College of Engineering, Bargur 635104, India, and ^cDepartment of Analytical Chemistry, University of Madras, Guindy Campus, Chennai 600025, India

Correspondence e-mail: a_spandian@yahoo.com

Received 7 September 2007; accepted 14 September 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.051; wR factor = 0.160; data-to-parameter ratio = 22.8.

In the title compound, $C_{25}H_{24}N_4O_2S_2$, one of the pyrrolidine rings in the pyrrolizine ring system adopts an envelope conformation, whereas the other ring adopts a twist conformation. The five-membered ring in the indolone ring system also adopts a twist conformation. The crystal packing is stabilized by $N-H\cdots N$ and $C-H\cdots O$ intermolecular hydrogen bonds, and $C-H\cdots\pi$ interactions. The $N-H\cdots N$ hydrogen bonds link the molecules into cyclic centrosymmetric $R_2^2(22)$ dimers.

Related literature

For general background, see: Chimirri et al. (1994); Farhanullah et al. (2004); Köysal et al. (2004); Kondo et al. (1990); Stylianakis et al. (2003). For ring conformations, see: Cremer & Pople (1975); Nardelli (1983). For related structures, see: Beddoes et al. (1986); Seshadri et al. (2003); Usha, Selvanayagam, Velmurugan, Ravikumar, Durga & Raghunathan (2005); Usha, Selvanayagam, Velmurugan, Ravikumar & Poornachandran (2005).

Experimental

Crystal data

C25H24N4O2S2 $V = 2406.97 (10) \text{ Å}^3$ $M_r = 476.60$ Z = 4Monoclinic, $P2_1/c$ Mo Ka radiation a = 10.8362 (3) Å $\mu = 0.25 \text{ mm}^{-1}$ b = 9.0056 (2) Å T = 293 (2) K c = 24.7698 (5) Å $0.26 \times 0.21 \times 0.17 \text{ mm}$ $\beta = 95.272 \ (1)^{\circ}$

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2001) $T_{\min} = 0.939, \ T_{\max} = 0.958$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.051$	300 parameters
$wR(F^2) = 0.160$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.56 \ {\rm e} \ {\rm \AA}^{-3}$
6839 reflections	$\Delta \rho_{\rm min} = -0.53 \ {\rm e} \ {\rm \AA}^{-3}$

29274 measured reflections

 $R_{\rm int} = 0.027$

6839 independent reflections

4872 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

Cg is the centroid of the S1/C25/C26/N27/C28 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$N15 - H15 \cdots N22^{i}$	0.86	2.15	2.978 (2)	162
$C7 - H7 \cdots O1$	0.98	2.56	3.005 (2)	108
C19−H19· · ·O1	0.93	2.51	3.301 (2)	143
C28−H28···O1 ⁱⁱ	0.93	2.47	3.016 (3)	118
$C24-H24C\cdots Cg^{ii}$	0.96	2.77	3.631 (3)	149

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997): software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

PR and ASP thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the X-ray data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2460).

References

- Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.
- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chimirri, A., Grasso, S., Montforte, A. M., Montforte, P., Zappala, M. & Carotti, A. (1994). Farmaco, 49, 337-344.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farhanullah, S. A., Maulik, P. R. & Ji Ram, V. (2004). Tetrahedron Lett. 45, 5099-5102.
- Kondo, H., Taguchi, M., Inoue, Y., Sakamoto, F. & Tsukamoto, G. (1990). J. Med. Chem. 33, 2012-2015.
- Köysal, Y., Işık, Ş., Doğdaş, E., Tozkoparan, B. & Ertan, M. (2004). Acta Cryst. C60, o356-o357.

Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.

- Seshadri, P. R., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Sureshbabu, A. R. & Raghunathan, R. (2003). Acta Cryst. E59, 01458– 01460.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2001). SADABS. Version 2.03. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

- Stylianakis, I., Kolocouris, A., Kolocouris, N., Fytal, G., Foscolos, G. B., Padalko, E., Neyts, J. & De Clercq, E. (2003). *Bioorg. Med. Chem. Lett.* 13, 1699–1703.
- Usha, G., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Durga, R. R. & Raghunathan, R. (2005). Acta Cryst. E61, o2267–o2269.
- Usha, G., Selvanayagam, S., Velmurugan, D., Ravikumar, K. & Poornachandran, M. (2005). Acta Cryst. E61, 03312–03314.
- Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.

Acta Cryst. (2007). E63, o4106-o4107 [doi:10.1107/S1600536807045072]

3-(4-Methyl-1,3-thiazol-5-yl)-1-[1'-(4-methyl-1,3-thiazol-5-yl)-2-oxo-2,3,2',3',5',6',7',7a'-octahydro-1*H*-indole-3-spiro-3'-1*H*-pyrrolizin-2'-yl]prop-2-en-1-one

P. Ramesh, S. Murugavel, A. SubbiahPandi, R. Murugan and S. S. Narayanan

Comment

The spiro ring system is a frequently encountered structural motif in many pharmacologically relevant alkaloids. Synthetic spiro-pyrrolidine derivatives have activity against aldose reductase enzyme which controls influenza (Stylianakis *et al.*, 2003). The pyrrolizidine alkaloids are well documented for their mutagenic, antineoplastic, carcinogenic, hepatoxic, and many pharmacological activities (Usha, Selvanayagam, Velmurugan, Ravikumar, Durga & Raghunathan, 2005); Usha, Selvanayagam, Velmurugan, Ravikumar & Poornachandran, 2005). Thiazole derivatives possess anti-inflammatory properties (Köysal *et al.*, 2004) and thiazole napthyridine derivatives exibit good antibactrial activity (Kondo *et al.*, 1990). A series of thiazole[3,4–9]benzimidazole derivatives have been evaluated *in vitro* as antitumor agents against 60 human tumor cell-lines (Chimirri *et al.*, 1994). Indole, being an integral part of many natural products of therapeutic importance, possesses potentially reactive sites for a variety of chemical reactions to generate molecular diversity (Farhanullah *et al.*, 2004). In view of this biological importance, the crystal structure of the title compound has been determined and the results are presented here.

In the molecule of the title compound (Fig.1), the C—C and C—N bond lengths in the pyrrolizine ring system are slightly longer than the values reported for similar structures (Seshadri *et al.*, 2003). This may be due to steric forces caused by the bulky substituents on the pyrrolizine ring system. The sum of angles at N1 of the pyrrolizine ring system (341.9°) is in accordance with sp^3 hybridization (Beddoes *et al.*, 1986), and the sum of the angles at N15 of the indole moiety (359.9°) is in accordance with sp^2 hybridization.

In the pyrrolizine ring system, the pyrrolidine ring A adopts an envelope conformation whereas the ring B adopts a twist conformation. The puckering parameters (q₂ and φ ; Cremer & Pople, 1975) and the smallest displacement asymmetry parameter (Δ ; Nardelli, 1983) are, for the ring A, q₂ = 0.371 (2) Å, φ = 79.0 (3)° and $\Delta_s(C6) = 4.6$ (2)°; for the ring B, q₂ = 0.334 (3) Å, φ = 241.9 (4)°, $\Delta_2(C5)$ =6.7 (3)° and $\Delta_s(C3)$ = 8.5 (3)°. The pyrrolizine ring system is folded about the bridging N1—C5 bond, as observed in related structures (Usha, Selvanayagam, Velmurugan, Ravikumar, Durga & Raghunathan, 2005); Usha, Selvanayagam, Velmurugan, Ravikumar & Poornachandran, 2005). The five-membered ring C in the indolone ring system adopts a twist conformation, with puckering parameters q₂ = 0.074 (2) Å, φ = 133.5 (2)°, $\Delta_2(C14)$ = 2.4 (2)° and $\Delta_s(C16)$ = 1.0 (2)°.

The molecular structure is stabilized by intramolecular C—H···O interactions and the crystal packing is stabilized by C—H···O and N—H···N intermolecular hydrogen bonds. The molecules at (x, y, z) and (1 - x, 2 - y, 1 - z) are linked by N15—H15···N22 hydrogen bonds into cyclic centrosymmetric $R_2^2(22)$ dimers. The dimers are cross-linked *via* C—H··· π interactions involving the S1/C25/C26/N27/C28 ring (centroid *Cg*).

Experimental

A solution of (1E,4E,6Z)-1,7-bis(methylthiazol-5-yl)-4-[(4-methylthiazol -5yl)methylene]hepta-1,6-diene-3,5-dione (1 mmol), isatin (1 mmol) and *L*-proline (1 mmol) in aqueous methonal (20 ml) was refluxed until the disappearence of starting materials as evidenced by TLC. The solvent was removed under reduced pressure and the crude product was purified by column-chromatography using petroleum ether/ethyl acetate (5:1) as eluent. The final product was recrystallized in ethanol and chloroform (2:8).

Refinement

H atoms were positioned geometrically (N—H = 0.86 Å and C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$. *PLATON* (Spek, 2003) detected a solvent accessible void of approximately 75 Å³ including the position of this peak. This void could have initially contained solvent molecules but these molecules have since evaporated from the structure without degradation of the crystal.

Figures

Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

3-(4-methyl-1,3-thiazol-5-yl)-1-[1'-(4-methyl-1,3-thiazol-5-yl)-2-oxo- 2,3,2',3',5',6',7',7a'-octahydro-1*H*-indole-3-spiro-3'-1*H*-pyrrolizin-2'-yl]prop-2-en-1-one

$F_{000} = 1000$
$D_{\rm x} = 1.315 {\rm ~Mg~m}^{-3}$
Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Cell parameters from 2850 reflections
$\theta = 2.0 - 25.5^{\circ}$
$\mu = 0.25 \text{ mm}^{-1}$
T = 293 (2) K
Block, colourless
$0.26 \times 0.21 \times 0.17 \text{ mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer	6839 independent reflections
Radiation source: fine-focus sealed tube	4872 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.027$
T = 293(2) K	$\theta_{\text{max}} = 29.8^{\circ}$
ω scans	$\theta_{\min} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)	$h = -15 \rightarrow 15$
$T_{\min} = 0.939, T_{\max} = 0.958$	$k = -12 \rightarrow 11$
29274 measured reflections	$l = -34 \rightarrow 34$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.051$	H-atom parameters constrained
$wR(F^2) = 0.160$	$w = 1/[\sigma^2(F_o^2) + (0.0799P)^2 + 0.9857P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{\rm max} = 0.005$
6839 reflections	$\Delta \rho_{max} = 0.56 \text{ e} \text{ Å}^{-3}$
300 parameters	$\Delta \rho_{min} = -0.53 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
S1	0.40437 (6)	0.92038 (8)	0.18158 (2)	0.0692 (2)
S2	0.25147 (6)	1.26490 (8)	0.44224 (2)	0.0696 (2)
01	0.48783 (12)	0.74268 (16)	0.36378 (6)	0.0506 (3)
O2	0.08715 (13)	0.96110 (17)	0.26782 (6)	0.0546 (4)
N1	0.30422 (15)	0.55545 (16)	0.29597 (6)	0.0408 (3)

C2	0.2387 (3)	0.4160 (3)	0.30022 (10)	0.0762 (8)
H2A	0.1512	0.4330	0.3031	0.091*
H2B	0.2725	0.3601	0.3316	0.091*
C3	0.2585 (3)	0.3356 (3)	0.24902 (10)	0.0665 (6)
H3A	0.3374	0.2838	0.2523	0.080*
H3B	0.1927	0.2645	0.2399	0.080*
C4	0.2573 (3)	0.4542 (3)	0.20783 (9)	0.0723 (8)
H4A	0.1736	0.4726	0.1919	0.087*
H4B	0.3086	0.4273	0.1793	0.087*
C5	0.30954 (19)	0.5913 (2)	0.23858 (7)	0.0445 (4)
H5	0.3960	0.6064	0.2312	0.053*
C6	0.23813 (16)	0.73706 (19)	0.23011 (6)	0.0344 (3)
H6	0.1492	0.7148	0.2264	0.041*
C7	0.26998 (14)	0.81582 (18)	0.28429 (6)	0.0316 (3)
H7	0.3536	0.8572	0.2843	0.038*
C8	0.27434 (15)	0.68763 (18)	0.32670 (6)	0.0330 (3)
C9	0.16479 (16)	0.6752 (2)	0.35981 (7)	0.0375 (4)
C10	0.03935 (18)	0.6653 (3)	0.34481 (9)	0.0525 (5)
H10	0.0095	0.6637	0.3084	0.063*
C11	-0.0415 (2)	0.6579 (3)	0.38492 (12)	0.0742 (7)
H11	-0.1265	0.6532	0.3755	0.089*
C12	0.0038 (3)	0.6573 (4)	0.43879 (12)	0.0817 (8)
H12	-0.0518	0.6503	0.4652	0.098*
C13	0.1288 (3)	0.6668 (3)	0.45480 (9)	0.0674 (7)
H13	0.1584	0.6659	0.4912	0.081*
C14	0.20798 (19)	0.6779 (2)	0.41451 (7)	0.0441 (4)
N15	0.33653 (16)	0.69457 (19)	0.42016 (6)	0.0472 (4)
H15	0.3812	0.6932	0.4507	0.057*
C16	0.38215 (16)	0.71317 (19)	0.37152 (7)	0.0379 (4)
C17	0.18303 (16)	0.94061 (19)	0.29627 (6)	0.0358 (3)
C18	0.21351 (17)	1.0351 (2)	0.34393 (7)	0.0415 (4)
H18	0.1489	1.0887	0.3568	0.050*
C19	0.32534 (17)	1.05114 (19)	0.37045 (7)	0.0391 (4)
H19	0.3895	0.9957	0.3581	0.047*
C20	0.35632 (18)	1.1463 (2)	0.41653 (7)	0.0423 (4)
C21	0.3649 (3)	1.3260 (3)	0.48850 (9)	0.0733 (7)
H21	0.3506	1.3987	0.5139	0.088*
N22	0.47284 (19)	1.2656 (2)	0.48645 (7)	0.0596 (5)
C23	0.46987 (19)	1.1618 (2)	0.44532 (7)	0.0450 (4)
C24	0.5839 (2)	1.0779 (3)	0.43622 (11)	0.0623 (6)
H24A	0.5622	0.9784	0.4252	0.093*
H24B	0.6378	1.0753	0.4692	0.093*
H24C	0.6255	1.1258	0.4084	0.093*
C25	0.26903 (16)	0.8213 (2)	0.18115 (6)	0.0374 (4)
C26	0.20859 (17)	0.8262 (2)	0.13094 (7)	0.0416 (4)
N27	0.26748 (17)	0.9047 (2)	0.09272 (6)	0.0494 (4)
C28	0.3701 (2)	0.9577 (3)	0.11439 (8)	0.0604 (6)
H28	0.4227	1.0132	0.0947	0.073*
C29	0.0868 (2)	0.7560 (4)	0.11396 (10)	0.0760 (8)
	× /	< / <	< · · /	- (-)

H29A	0.0998	0.6660	0.0945	0.114*
H29B	0.0373	0.8230	0.0910	0.114*
H29C	0.0448	0.7336	0.1455	0.114*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0752 (4)	0.0939 (5)	0.0364 (2)	-0.0519 (3)	-0.0055 (2)	0.0098 (3)
S2	0.0681 (4)	0.0850 (5)	0.0526 (3)	0.0197 (3)	-0.0103 (3)	-0.0331 (3)
O1	0.0369 (7)	0.0500 (8)	0.0625 (9)	0.0037 (6)	-0.0084 (6)	-0.0038 (6)
O2	0.0535 (8)	0.0560 (9)	0.0501 (8)	0.0122 (7)	-0.0174 (6)	-0.0026 (6)
N1	0.0555 (9)	0.0313 (7)	0.0350 (7)	0.0002 (6)	0.0006 (6)	-0.0035 (6)
C2	0.144 (3)	0.0380 (12)	0.0490 (12)	-0.0259 (14)	0.0224 (14)	-0.0036 (9)
C3	0.0973 (18)	0.0446 (12)	0.0562 (13)	-0.0152 (12)	-0.0011 (12)	-0.0089 (10)
C4	0.135 (2)	0.0408 (12)	0.0410 (10)	-0.0058 (13)	0.0063 (13)	-0.0106 (9)
C5	0.0597 (11)	0.0361 (9)	0.0395 (9)	-0.0037 (8)	0.0139 (8)	-0.0043 (7)
C6	0.0407 (8)	0.0358 (9)	0.0265 (7)	-0.0085 (6)	0.0022 (6)	-0.0019 (6)
C7	0.0360 (7)	0.0313 (8)	0.0267 (7)	-0.0039 (6)	-0.0012 (5)	-0.0002 (6)
C8	0.0382 (8)	0.0319 (8)	0.0277 (7)	-0.0008 (6)	-0.0026 (6)	0.0000 (6)
C9	0.0433 (9)	0.0366 (9)	0.0322 (8)	-0.0021 (7)	0.0009 (6)	0.0048 (6)
C10	0.0453 (10)	0.0609 (13)	0.0509 (11)	-0.0075 (9)	0.0009 (8)	0.0108 (9)
C11	0.0484 (12)	0.091 (2)	0.0858 (19)	-0.0083 (12)	0.0182 (12)	0.0186 (15)
C12	0.0846 (19)	0.097 (2)	0.0703 (17)	-0.0054 (16)	0.0413 (15)	0.0091 (15)
C13	0.0881 (18)	0.0782 (17)	0.0384 (10)	-0.0047 (14)	0.0195 (11)	0.0017 (10)
C14	0.0579 (11)	0.0431 (10)	0.0311 (8)	0.0001 (8)	0.0029 (7)	0.0014 (7)
N15	0.0570 (9)	0.0519 (10)	0.0297 (7)	0.0009 (7)	-0.0119 (6)	-0.0001 (6)
C16	0.0428 (9)	0.0313 (8)	0.0372 (8)	0.0062 (7)	-0.0082 (7)	-0.0017 (6)
C17	0.0416 (8)	0.0331 (8)	0.0316 (7)	-0.0004 (6)	-0.0030 (6)	0.0020 (6)
C18	0.0472 (9)	0.0393 (9)	0.0371 (8)	0.0074 (7)	-0.0012 (7)	-0.0059 (7)
C19	0.0495 (9)	0.0327 (9)	0.0343 (8)	0.0018 (7)	-0.0009 (7)	-0.0015 (6)
C20	0.0539 (10)	0.0396 (10)	0.0321 (8)	0.0018 (8)	-0.0024 (7)	-0.0027 (7)
C21	0.0852 (18)	0.0872 (19)	0.0449 (11)	0.0044 (15)	-0.0087 (11)	-0.0311 (12)
N22	0.0730 (12)	0.0670 (12)	0.0359 (8)	-0.0090 (10)	-0.0105 (8)	-0.0081 (8)
C23	0.0558 (10)	0.0442 (10)	0.0337 (8)	-0.0071 (8)	-0.0035 (7)	0.0028 (7)
C24	0.0506 (12)	0.0630 (14)	0.0715 (14)	-0.0059 (10)	-0.0036 (10)	0.0011 (11)
C25	0.0436 (9)	0.0387 (9)	0.0298 (7)	-0.0099 (7)	0.0026 (6)	-0.0010 (6)
C26	0.0438 (9)	0.0488 (11)	0.0318 (8)	-0.0044 (8)	0.0012 (6)	0.0007 (7)
N27	0.0607 (10)	0.0569 (10)	0.0304 (7)	-0.0069 (8)	0.0038 (7)	0.0047 (7)
C28	0.0780 (15)	0.0678 (14)	0.0359 (9)	-0.0287 (12)	0.0075 (9)	0.0076 (9)
C29	0.0569 (13)	0.118 (2)	0.0493 (12)	-0.0302 (14)	-0.0145 (10)	0.0133 (13)

Geometric parameters (Å, °)

1.705 (2)	C11—H11	0.93
1.7157 (17)	C12—C13	1.379 (4)
1.694 (2)	C12—H12	0.93
1.723 (2)	C13—C14	1.378 (3)
1.208 (2)	С13—Н13	0.93
1.215 (2)	C14—N15	1.395 (3)
	1.705 (2) 1.7157 (17) 1.694 (2) 1.723 (2) 1.208 (2) 1.215 (2)	1.705 (2) C11—H11 1.7157 (17) C12—C13 1.694 (2) C12—H12 1.723 (2) C13—C14 1.208 (2) C13—H13 1.215 (2) C14—N15

N1 C2	1 451 (3)	N15 C16	1354(2)
N1	1.451(3) 1.464(2)	N15-H15	0.86
N1_C8	1.404(2)	C16 01	1.208(2)
$\Omega_{1} = 0$	1.403(2) 1.403(3)	$C_{10}^{16} = 01$	1.208(2)
$C_2 = C_3$	1.495(3)	$C_{10}^{17} = C_{18}^{18}$	1.208(2) 1.468(2)
C_{3} H_{3}	0.07	$C_{17}^{18} = C_{18}^{10}$	1.408(2) 1.222(2)
C2 H2P	0.97	C18 U19	1.332(2)
C4_C5	1,522 (2)	C10 C20	0.95
$C_4 = C_3$	1.332 (3)	C19 = C20	1.442 (2)
C4—H4A	0.97	C19—H19	0.93
C4—H4B	0.97	$C_{20} = C_{23}$	1.3/1(3)
C5—C6	1.529 (5)	C21—N22	1.295 (3)
С5—Н5	0.98	C21—H21	0.93
C6-C25	1.494 (2)	N22—C23	1.381 (3)
C6C7	1.529 (2)	C23—C24	1.483 (3)
С6—Н6	0.98	C24—H24A	0.96
C/C1/	1.513 (2)	С24—Н24В	0.96
C7—C8	1.559 (2)	C24—H24C	0.96
С7—Н7	0.98	C25—C26	1.352 (2)
C8—C9	1.508 (2)	C26—N27	1.384 (2)
C8—C16	1.553 (2)	C26—C29	1.489 (3)
C9—C10	1.379 (3)	N27—C28	1.282 (3)
C9—C14	1.392 (2)	C28—H28	0.93
C10—C11	1.386 (3)	C29—H29A	0.96
C10—H10	0.93	C29—H29B	0.96
C11—C12	1.379 (4)	С29—Н29С	0.96
C28—S1—C25	89.25 (9)	С11—С12—Н12	119.0
C21—S2—C20	89.37 (11)	C12—C13—C14	117.2 (2)
C2—N1—C5	108.9 (2)	C12—C13—H13	121.4
C2—N1—C8	122.2 (2)	C14—C13—H13	121.4
C5—N1—C8	110.8 (1)	C13—C14—C9	121.8 (2)
N1—C2—C3	104.38 (19)	C13—C14—N15	128.1 (2)
N1—C2—H2A	110.9	C9—C14—N15	110.04 (16)
C3—C2—H2A	110.9	C16—N15—C14	111.5 (1)
N1—C2—H2B	110.9	C16—N15—H15	124.2
C3—C2—H2B	110.9	C14—N15—H15	124.2
H2A—C2—H2B	108.9	O1-C16-N15	126.69 (16)
C4—C3—C2	104.09 (19)	O1-C16-N15	126.69 (16)
С4—С3—НЗА	110.9	01—C16—N15	126.69 (16)
С2—С3—НЗА	110.9	O1—C16—C8	125.51 (16)
С4—С3—Н3В	110.9	O1—C16—C8	125.51 (16)
С2—С3—Н3В	110.9	O1—C16—C8	125.51 (16)
НЗА—СЗ—НЗВ	109.0	N15—C16—C8	107.80 (15)
C3—C4—C5	105.07 (18)	O2—C17—C18	119.71 (16)
C3—C4—H4A	110.7	O2—C17—C7	120.92 (15)
С5—С4—Н4А	110.7	C18—C17—C7	119.35 (14)
C3—C4—H4B	110.7	C19—C18—C17	125.91 (17)
C5—C4—H4B	110.7	С19—С18—Н18	117.0
H4A—C4—H4B	108.8	C17—C18—H18	117.0
N1—C5—C6	104.95 (14)	C18—C19—C20	126.13 (18)

N1—C5—C4	105.04 (15)	C18—C19—H19	116.9
C6—C5—C4	117.69 (18)	С20—С19—Н19	116.9
N1—C5—H5	109.6	C23—C20—C19	127.18 (18)
С6—С5—Н5	109.6	C23—C20—S2	109.60 (14)
C4—C5—H5	109.6	C19—C20—S2	123.19 (14)
C25—C6—C7	115.30 (14)	N22—C21—S2	116.02 (17)
C25—C6—C5	113.53 (14)	N22—C21—H21	122.0
C7—C6—C5	101.96 (13)	S2—C21—H21	122.0
С25—С6—Н6	108.6	C21—N22—C23	110.71 (18)
С7—С6—Н6	108.6	C20—C23—N22	114.30 (19)
С5—С6—Н6	108.6	C20—C23—C24	126.11 (18)
C17—C7—C6	114.97 (13)	N22—C23—C24	119.58 (19)
С17—С7—С8	113.49 (13)	C23—C24—H24A	109.5
C6—C7—C8	103.79 (13)	C23—C24—H24B	109.5
С17—С7—Н7	108.1	H24A—C24—H24B	109.5
С6—С7—Н7	108.1	C23—C24—H24C	109.5
С8—С7—Н7	108.1	H24A—C24—H24C	109.5
N1—C8—C9	116.42 (14)	H24B—C24—H24C	109.5
N1-C8-C16	107.70 (13)	C26—C25—C6	129.59 (16)
C9—C8—C16	101.55 (13)	C26—C25—S1	109.29 (13)
N1—C8—C7	104.24 (12)	C6—C25—S1	120.93 (12)
C9—C8—C7	116.43 (14)	C25—C26—N27	115.54 (16)
C16—C8—C7	110.26 (13)	C25—C26—C29	126.01 (18)
C10—C9—C14	119.89 (17)	N27—C26—C29	118.44 (17)
С10—С9—С8	131.62 (16)	C28—N27—C26	109.91 (16)
C14—C9—C8	108.48 (15)	N27—C28—S1	115.99 (15)
C9—C10—C11	118.9 (2)	N27—C28—H28	122.0
С9—С10—Н10	120.6	S1—C28—H28	122.0
C11—C10—H10	120.6	С26—С29—Н29А	109.5
C12—C11—C10	120.1 (2)	С26—С29—Н29В	109.5
C12—C11—H11	119.9	H29A—C29—H29B	109.5
C10-C11-H11	119.9	С26—С29—Н29С	109.5
C13—C12—C11	122.1 (2)	H29A—C29—H29C	109.5
C13—C12—H12	119.0	H29B—C29—H29C	109.5
C5—N1—C2—C3	26.5 (3)	O1-O1-C16-N15	0.0 (2)
C8—N1—C2—C3	157.8 (2)	O1—O1—C16—C8	0.0 (2)
N1—C2—C3—C4	-35.7 (3)	O1—O1—C16—C8	0.0 (2)
C2—C3—C4—C5	31.2 (3)	C14—N15—C16—O1	173.29 (18)
C2—N1—C5—C6	117.7 (2)	C14—N15—C16—O1	173.29 (18)
C8—N1—C5—C6	-19.43 (19)	C14—N15—C16—O1	173.29 (18)
C2—N1—C5—C4	-7.0 (3)	C14—N15—C16—C8	-7.5 (2)
C8—N1—C5—C4	-144.16 (18)	N1-C8-C16-O1	64.1 (2)
C3—C4—C5—N1	-15.3 (3)	C9—C8—C16—O1	-173.06 (17)
C3—C4—C5—C6	-131.6 (2)	C7—C8—C16—O1	-49.0 (2)
N1C5C6C25	159.30 (14)	N1-C8-C16-O1	64.1 (2)
C4—C5—C6—C25	-84.4 (2)	C9—C8—C16—O1	-173.06 (17)
N1—C5—C6—C7	34.64 (17)	C7—C8—C16—O1	-49.0 (2)
C4—C5—C6—C7	150.96 (17)	N1-C8-C16-O1	64.1 (2)
C25—C6—C7—C17	75.27 (19)	C9—C8—C16—O1	-173.06 (17)

C5—C6—C7—C17	-161.26 (14)	C7—C8—C16—O1	-49.0 (2)
C25—C6—C7—C8	-160.18 (14)	N1-C8-C16-N15	-115.12 (15)
C5—C6—C7—C8	-36.71 (16)	C9—C8—C16—N15	7.70 (18)
C2—N1—C8—C9	-4.7 (3)	C7—C8—C16—N15	131.73 (15)
C5—N1—C8—C9	125.79 (16)	C6—C7—C17—O2	9.2 (2)
C2—N1—C8—C16	108.4 (2)	C8—C7—C17—O2	-110.07 (18)
C5—N1—C8—C16	-121.05 (16)	C6—C7—C17—C18	-172.64 (15)
C2—N1—C8—C7	-134.4 (2)	C8—C7—C17—C18	68.1 (2)
C5—N1—C8—C7	-3.91 (18)	O2-C17-C18-C19	-162.21 (19)
C17—C7—C8—N1	151.14 (13)	C7—C17—C18—C19	19.6 (3)
C6—C7—C8—N1	25.64 (16)	C17—C18—C19—C20	178.51 (18)
C17—C7—C8—C9	21.44 (19)	C18—C19—C20—C23	178.2 (2)
C6—C7—C8—C9	-104.06 (15)	C18—C19—C20—S2	-4.0 (3)
C17—C7—C8—C16	-93.52 (16)	C21—S2—C20—C23	0.26 (18)
C6—C7—C8—C16	140.98 (14)	C21—S2—C20—C19	-177.86 (19)
N1—C8—C9—C10	-70.0 (3)	C20—S2—C21—N22	-0.3 (2)
C16—C8—C9—C10	173.3 (2)	S2-C21-N22-C23	0.2 (3)
C7—C8—C9—C10	53.6 (3)	C19—C20—C23—N22	177.81 (19)
N1—C8—C9—C14	111.27 (17)	S2-C20-C23-N22	-0.2 (2)
C16—C8—C9—C14	-5.35 (18)	C19—C20—C23—C24	-2.9 (3)
C7—C8—C9—C14	-125.11 (16)	S2—C20—C23—C24	179.10 (18)
C14—C9—C10—C11	-0.2 (3)	C21—N22—C23—C20	0.0 (3)
C8—C9—C10—C11	-178.7 (2)	C21—N22—C23—C24	-179.3 (2)
C9—C10—C11—C12	-1.3 (4)	C7—C6—C25—C26	-145.1 (2)
C10-C11-C12-C13	1.3 (5)	C5—C6—C25—C26	97.8 (2)
C11—C12—C13—C14	0.3 (5)	C7—C6—C25—S1	40.4 (2)
C12-C13-C14-C9	-1.9 (4)	C5-C6-C25-S1	-76.68 (18)
C12—C13—C14—N15	177.3 (2)	C28—S1—C25—C26	-0.87 (17)
C10-C9-C14-C13	1.8 (3)	C28—S1—C25—C6	174.65 (17)
C8—C9—C14—C13	-179.3 (2)	C6—C25—C26—N27	-174.20 (18)
C10-C9-C14-N15	-177.48 (18)	S1—C25—C26—N27	0.8 (2)
C8—C9—C14—N15	1.4 (2)	C6—C25—C26—C29	5.9 (4)
C13-C14-N15-C16	-175.2 (2)	S1—C25—C26—C29	-179.1 (2)
C9—C14—N15—C16	4.0 (2)	C25—C26—N27—C28	-0.2 (3)
01—01—C16—O1	0.0 (2)	C29—C26—N27—C28	179.7 (2)
01—01—C16—O1	0.0 (2)	C26—N27—C28—S1	-0.5 (3)
01—01—C16—N15	0.0 (2)	C25—S1—C28—N27	0.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —H	$H \cdots A$	$D \cdots A$	D—H···A
N15—H15…N22 ⁱ	0.86	2.15	2.978 (2)	162
С7—Н7…О1	0.98	2.56	3.005 (2)	108
С19—Н19…О1	0.93	2.51	3.301 (2)	143
C28—H28…O1 ⁱⁱ	0.93	2.47	3.016 (3)	118
C24—H24C···Cg ⁱⁱ	0.96	2.77	3.631 (3)	149
	1 1/0 1/0			

Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1, y+1/2, -z+1/2.

